Efficient Model Editing for Safe Information Localization and Stitching

Han Zhao 02/26/2025

NSF Workshop on Safe Al Joint work with Yifei He, Siqi Zeng, Yuzheng Hu, Rui Yang and Tong Zhang

hanzhao@illinois.edu Department of Computer Science University of Illinois Urbana-Champaign

Task Vectors for Large Models

Task vectors and model merging:

- Fine-tune k different tasks from a pre-trained model $\theta_{\rm pre}$ to obtain fine-tuned model parameters $\theta_i, \forall i \in [k]$
- Task vector $\tau_i := \theta_i \theta_{\text{pre}}$
- Arithmetic operations on task vectors for multi-tasking capability:

$$\theta_m := \theta_{\text{pre}} + \sum_{i \in [k]} \alpha_i \tau_i$$

for some $\sum_{i \in [k]} \alpha_i = 1, \alpha_i \ge 0, \forall i \in [k]$

Figure credit to Ilharco et al., "Editing models with task arithmetic"

Sparsity Localization

Sparse task vectors for model merging?

- Computationally more efficient
- Less task interference among task vectors, hence suboptimal multi-task performance of the merged model
- Mechanistic interpretability: more transparent and explainable (?)

"Localize-and-Stitch: Efficient Model Merging via Sparse Task Arithmetic", He et al., TMLR' 24

Localize-and-Stitch

Experiments

- Base models: RoBERTa-base
- Tasks: 12 GLUE
- Sparsity: ~1% 10%

(a) Jaccard similarity of pairwise task masks.

(b) Cosine similarity of masked task vectors.

Localize-and-Stitch

Localized modules:

layers in the RoBERTa-base model.

(a) Distribution of localized regions in different network (b) Distribution of localized regions in different network components in the RoBERTa-base model.

- The localized regions are predominantly found in the LayerNorm parameters -
- Percentage = % of parameters in each module localized by the mask -

Safety Information Localization

Cross-lingual fine-tuning attacks:

- Fine-tuning on adversarial examples in one language breaks multilingual safety alignment

"Towards Understanding the Fragility of Multilingual LLMs against Fine-Tuning Attacks", Poppi et al., NAACL' 25

Safety Information Localization

Cross-lingual fine-tuning attacks:

- Localization:
 - Overlapped localized regions of different tasks contain knowledge shared across them
 - Different languages share common safety regions in multilingual LLMs, explaining cross-lingual transfer
- Stitching attack:
 - Stitching localized jailbroken regions onto benign models breaks the safety alignment of unseen languages

	Defne-llama3.1-8B (2024)								
	EN	IT	ZH	BN	AR	TR			
Before Stitching	0.9	1.3	0.9	7.4	0.3	2.9			
After Stitching	25.7	11.7	20.7	18.4	22.6	19.4			

Why do Task Vectors Work?

Properties of task vectors:

- Fine-tuning regime: small task vector norms
- Near task-orthogonality
- Local smoothness of the loss

Cross-task generalization of the merged model:

$$\theta_m := \theta_{\text{pre}} + \sum_{i \in [k]} \alpha_i \tau_i$$

For each task $i \in [k]$:

"Efficient Model Editing with Task Vector Bases: A Theoretical Framework and Scalable Approach", Zeng et al., arXiv: 2502.01015

Thanks

Thanks for the generous support from the NSF SLES program! Ongoing projects:

- MergeBench: a comprehensive benchmark for evaluation of different localization and merging methods

Experiment	Task Type	Dataset	# Data	GPU for 2B model	GPU for 8B model	
	Instruction-following	TULU-3 [9]	29.9K			
Supervised Finetuning (SFT)	Mathematics	DART-Math [16]	591K	•		
	Multilingual understanding	Aya [14]	5.94K	•	4 A100 GPUs / 8 A6000 GPUs	
	Coding	Magicoder [17]	110K	2 A100 GPUs / 4 A6000 GPUs		
	SafetyWildGuardMix [5]86.76KWildJailbreak [7]261.56K		-			
Evaluation	Instruction-following	AlpacaEval [10] IFEval [18]	805 541			
	Mathematics	GSM8k [3] MATH [6]	1.32K 5K	-		
	Multilingual understanding	M_MMLU [8] M_ARC [8] M_Hellaswag [8]	60K 10.34K 37.35K			
	Coding	Humaneval+ [2] MBPP+ [1]	164 378	1 A6000 GPUs	1 A100 GPUs / 2 A6000 GPUs	
	Safety	WildGuardTest [5] HarmBench [11] DoAnythingNow [13] XSTest [12]	1.73K 410 15.14K 450			

