
Robustness → Antifragility*: 
Bridging Design-Time Safety & 

Test-Time Adaptation
Power Systems, Cybersecurity, and beyond
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Antifragility: “Systems that benefit from shocks and volatility, emerging stronger over time.” - N. Taleb



From Known Risks to Unknown Threats
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Antifragility = Bridging Offline Safety & Online Adaptation  
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Meta-Safe RL: Learning to do Safe RL Fast

Goal: adapt the policy initialization to minimize:

Task-averaged:

 optimality gap

constraint 
violation

Constrained MDP 

A CMDP-within-online framework for Meta-Safe Reinforcement 
Learning. Khattar, V.; Ding, Y.; Sel, B.; Lavaei, J.; and Jin, M. 
ICLR 2023. (spotlight presentation)

meta learner
Safe policy 

init.

Learned policy
+

Traj. data

Adaptive safety bound

Applications: critical load restoration (w/ NREL), automated pen-testing (Deloitte’s RASOR platform)



Zero-Day ICS Attacks: In-Context Detection W/O Feedback

● Challenge: No labeled data or 

real-time feedback for novel  attacks.

● Method: Pretrained transformer + 

minimal heuristics (weak classifiers) 

→ in-context labels, no fine-tuning.

● Result: ~85% detection on ICS data
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Zero-Day Attack Detection Rate vs. Methods

CPS demo (2024 Oct.) Field test (2025 Q4)



A Roadmap to Safe & Antifragile AI
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Towards 
Antifragility: 
use near-/imagined-failures 
as feedback, minimize 
labeled data reliance , 
in-context safe RL, …


