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DeSimplex: Data-Enabled Simplex

Primary Goal: Establish a verifiably safe 
framework that enables learning-enabled 
systems to adapt and perform effectively 
amidst unforeseen changes in system 
dynamics, extreme events, environmental 
hazards, and irregular system behaviors.

Core Principle: Transferring control 
authority from high-performance 
learning-based components to high-
assurance solutions (Simplex) whenever 
safety boundaries are at risk of being 
violated, thus ensuring end-to-end safety.

Target Applications: Autonomous 
vehicles (aerial and ground) with a 
focus on collision avoidance and safety.
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Key Components

Safety Monitor: Online assess 
the uncertainties and reliability 
of the HP learning components.

Decision Logic: Transition from 
HPA to HSA when the obstacle 
state and vehicle state 
approach the boundaries of a 
pre-calculated safety tube.

Supporting Tech: Stochastic 
reachability analysis, Envelope-
based switching law
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Goal: Deliver reliable control of the 
system, prioritizing safety guarantees over 
optimal performance. 
o Allowing for additional time to recover the 

learning process in HPA.

Supporting Technologies:

• HA perception: [Placeholder for 
Shenlong]

• HA planning: Min-max optimization to 
handle worst-case uncertainties.

• HA control: DRAC, L1MPC

Goal: Optimize system performance, 
despite lack of verification.
o Data collection and learning are continuously 

operating even if the HPA does not have the 
control authority.

Supporting Technologies:

• HP perception: Uncertainty-aware 
neural semantic scene understanding

• HP planning: Optimization with chance 
constraints

• HP control: DiffTune and TPN
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Design Philosophy: The safety region is determined by the capacities of the high-assurance autonomy. 
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