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Primary Goal: Establish a verifiably safe
framework that enables learning-enabled
systems to adapt and perform effectively
amidst unforeseen changes in system
dynamics, extreme events, environmental
hazards, and irregular system behaviors.

Core Principle: Transferring control
authority from high-performance
learning-based components to high-
assurance solutions (Simplex) whenever
safety boundaries are at risk of being
violated, thus ensuring end-to-end safety.

Target Applications: Autonomous
vehicles (aerial and ground) with a
focus on collision avoidance and safety.
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Goal: Optimize system performance,
despite lack of verification.

o Data collection and learning are continuously
operating even if the HPA does not have the
controlauthority.

Supporting Technologies:

* HP perception: Uncertainty-aware
neural semantic scene understanding

* HP planning: Optimization with chance
constraints

e HP control: DiffTune and TPN
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Goal: Deliver reliable control of the
system, prioritizing safety guarantees over
optimal performance.

o Allowing for additional time to recover the
learning process in HPA.

Supporting Technologies:

* HA perception: Uncertainty-calibrated
state-estimation and mapping

* HA planning: Min-max optimization to
handle worst-case uncertainties.

* HA control: DRAC, L1MPC
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Goal: Deliverreliable control of the
system, prioritizing safety guarantees over
optimal performance.
o Allowing for additional time to recover the

learning process in HPA.

Supporting Technologies:

* HA perception: Uncertainty-calibrated

state-estimation and mapping

* HA planning: Min-max optimization to

handle worst-case uncertainties.

* HA control: DRAC, L1-MPC

Safety Monitor: Online assess
the uncertainties and reliability
of the HP learning components.

Decision Logic: Transition from
HPA to HAA when the obstacle
state and vehicle state
approach the boundaries of a
pre-calculated safety tube.

Supporting Tech: Stochastic

reachability analysis, Envelope-
based switching law

Design Philosophy: The safety region is determined by the capacities of the high-assurance autonomy.
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