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NetSafe Overview: Safe Graph Neural Networks @Dﬂﬂ

* Goal: Build a Computational Foundation for End-to-end Safe GNNs.

» Safety Notion: Performance Assurance against Hazards

* Hazards = external perturbation & dataset shifts
* Requires the learning model (e.g., GNNs) to generalize well, ideally with provable guarantee, in
the presence of unintended or unexpected behavior (largely remain same)

* Three aspects: awareness, robustness, and confidence
e Collectively identify, endure, and reduce hazards in a machine learning system

* Research Tasks: Safe Training (Task 1), Adaptation (Task 2), Testing (Task 3)
 Evaluation Plan: Benchmark evaluation, finance and power grid.




Research Tasks & Evaluation

®T1.1: Learning Perturbation ®T2.1: GNNs w/ Covariate Shift
®T1.2: Sensitivity-aware Training ®T2.2: GNNs w/ Label Shift

Raw Graph Realistic Ptb
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Task 1: Safe Training Task 2: Safe Adaptation
Research Tasks

® T3.1: Closed-set Testing
® 73.2: Open-set Testing

moin Liest =YL+ (1 —7)Lp

s.t. Lp = Eyey,.. [Entropy(f(8,G,v))],
Lp = —Entropy(Ey.ep... [f(8,G,v)])

Evaluations: ® Benchmark Evaluations ® Financial Fraud Detection ® Power Systems
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Goal: Computational Foundation of End-to-end Safe GNNs
Safety Notion: Performance assurance against hazards
3 Key Aspects: awareness ® robustness ® confidence
® *  Research Scope: 3 learning stages & 2 types of hazards

O)
@ Key Challenges: Realistic perturbation ® Dataset shifts ® Non-IID

®T1.1: Learning Perturbation ®T2.1: GNNs w/ Covariate Shift ® T3.1: Closed-set Testing
®T1.2: Sensitivity-aware Training ®T2.2: GNNs w/ Label Shift ® T3.2: Open-set Testing

Research Tasks

Evaluations: ® Benchmark Evaluations ® Financial Fraud Detection ® Power Systems

Components:

»  Safe GNNs Training

»  Safe GNNs Adaptation

»  Safe GNNs Testing

Rationale:

»  Safety Notion: Performance Assurance against Hazards

* 3 Key Aspects: Awareness, Robustness, and Confidence

*  Research Scope: 3 Learning Stages & 2 Types of Hazards
Safety Plan:

*  Learning Realistic Perturbations for Safe Training

»  Safe Adaptation against Covariant and Label Shift

*  Closed-set and Open-set Safe Testing

Validation:

*  Benchmark and Synthetic Datasets: Efficacy & Robustness

*  Two Case Studies: Financial Fraud Detection & Early Event Detection in Power Systems

Intellectual Merit:

This project aims to build a computational foundation for end-to-end safe GNNs. It will
establish new theoretical foundations in terms of the sensitivity, NP-hardness, confidence, and
generalization error bound of safe GNNs. It will enable learning realistic perturbations and
introduce new discrepancy and divergence measures for graphs, which will in turn lead to new
algorithms for safe GNNSs training, adaptation and testing with better efficacy and robustness.

Broader Impacts Plan:

* Benefit safety critical graph learning based applications, including fraud detection and power
systems.

* Curriculum development, with supplemental material for the data mining textbook.

* Engaging minorities through mentoring programs, with an emphasis on bridging activities.

* Disseminating the data, code and manuscripts from this project.

Prior Results:

*  Adversarial Graph Training

*  Open-set Domain Adaptation for IID Data
*  Graph Anomaly and Event Detection

Expected Results:

*  Thrust 1: Introducing a formal definition of realistic perturbations with quantified confidence,
establishing a new sensitivity measure, and developing new algorithms for robust GNNs training.

*  Thrust 2: Introducing a new graph discrepancy measure based on fused Gromov-Wasserstein distance,
establishing the label-informed divergence measure for graphs, and unifying covariate shift and label
shift for safe GNNs adaptation.

*  Thrust 3: Designing an unsupervised objective for closed-set safe GNNs testing, and developing the
open-set safe GNNs testing method without the access to the training graph.




Matcha: Mitigating Graph Structure Shifts with filncn!;
Test-Time Adaptation (ICLR 2025)

* Distribution shifts in graphs:

 Attribute shift: Node feature distribution is different
* E.g., LinkedIn and Instagram users have different profile

 Structure shift: Node connectivity patterns vary
* E.g., professional connections vs. family & friends
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* Graph test-time adaptation (graph TTA):

* Given: source GNN model, unlabeled target graph T
* Find: Target GNN model
* Goal: Maximize the node classification accuracy
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* Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, Jingrui He. Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation. ICLR 2025.




Theoretical Findings @

* Challenge: Most of the existing generic TTA algorithms, designed for
other data (e.g., images), fail on graphs with structure shift.

* Our finding: Attribute shifts and structure shifts have different impact
patte rns -—- Decision Boundary Positive Class Wl Negative Class
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* Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, Jingrui He. Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation. ICLR 2025.




Matcha: Overview (oea]
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* Matcha adapts the hop-aggregation parameters in GNNs (e.g., Yo, ***, Yk
for GPRGNN)

* Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, Jingrui He. Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation. ICLR 2025.




Prediction-Informed Clustering Loss @

* We proposed a new loss function: =
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* Centroid for all nodes: u, = lei\i1zi

* Centroid for class c: . =

* Intuition
* Small intra-class variance Jﬁltra, large inter-class variance aﬁlter

* Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, Jingrui He. Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation. ICLR 2025.




Experiments: Matcha Enhances the Performance ofgilncng
Existing TTA Methods

* Synthetic CSBM dataset with
different types of structure shifts
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* Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, Jingrui He. Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation.
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 Real-world datasets

Method Syn-Cora  Syn-Products = Twitch-E OGB-Arxiv
ERM 65.67 £0.35 37.80 £2.61 56.20+0.63 41.06 £ 0.33
+Matcha  78.96 £1.08 69.75 093 56.76 £0.22 41.74 £0.34
T3A 68.25 £ 1.10 47.59 £1.46 56.83 £0.22 38.17 £0.31
+Matcha 7840+ 1.04 69.81 £0.36 56.97 £0.28 38.56 &+ 0.27
Tent 66.26 £0.38 29.14 £4.50 58.46 £ 0.37 34.48 £0.28
+ Matcha  78.87 £ 1.07 68.45+1.04 58.57 +£0.42 35.20 +0.27
AdaNPC 67.34 £ 0.76 44.67 £1.53 55.43 £0.50 40.20 £0.35
+Matcha  77.45+0.62 71.66 £0.81 56.35+0.27 40.58 £+ 0.35
GTrans 68.60 £0.32 4389 £1.75 56.24 £0.41 41.28 £0.31
+ Matcha  83.49 £0.78 71.75 £0.65 56.75 £0.40 41.81 £0.31
SOGA 67.16 £0.72 40.96 £2.87 56.12+0.30 4123 £0.34
+Matcha  79.03 +£1.10 70.13£0.86 56.62£0.17 41.78 £ 0.34
GraphPatcher 63.01 +2.29 36.94 £ 1.50 57.05 £ 0.59 41.27 4+ 0.87
+Matcha  80.99 £0.50 69.39 +1.29 57.41 £0.53 41.83 £+ 0.90

ICLR 2025.




Experiments: Matcha Restores the Representation filncng
Quality

 While structure shifts blur the
boundary of node classes (b),
Matcha can restore the
representation quality (f), better o o

(e) Target, 02, — O er (f) Target, PIC

(a) Source (b) Target, (None) (c) Target, Entropy

Loss Homophily shift Degree shift

homo — hetero  hetero — homo high — low low — high
(None) 73.62 + 0.44 76.72 £+ 0.89 86.47 + 0.38 92.92 + 0.43 ;
Entropy 75.89 £+ 0.68 89.98 + 0.23 86.81 + 0.34 93.75 £ 0.72 0T F ) , S BSTI ' ‘:
PseudoLabel 77.29 + 3.04 89.44 + 0.22 86.72 £+ 0.31 93.68 £ 0.69 : Negative Class Y5 T . Negative Class 1_.,»‘%';:.{.2‘ & Negative Class
e 76.10 + 0.43 72.43 + 0.65 82.56 4+ 0.99 92.92 4+ 0.44 Positive Class : Positive Class ¥ Positive Class

PIC (Ours) 89.71 £+ 0.27 90.68 + 0.26 88.55 + 0.44 93.78 + 0.74
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