Bridging Oftline Design and Online Adaptation
in Safe Learning-Enabled Systems

Nikolai Matni George Pappas Benjamin Recht
PI, Penn Co-PI, Penn Co-PI, UCB
E@Dﬂ ~ Berkeley
noineerin
g & TENGINEERING

UNIVERSITY 0 f PENNSYLVANIA




Are meaningful safety guarantees even possible?
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known unknowns
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data is key
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Problem Experiment Model Controller

Formulation i i SysID —_— SyntheS|s —_—

[System dynamics: X, , = (X, U,0*)+ W, 6* unknown, W, ~ A (0,6:]) )

Want policy U, = 7,(X,) from class I1™ to minimize control objective: h
I
J(,0)=Ej | ) (X, U) + crpy(Xpy )
_ =1 Wy

‘ Y A . 2
1. Estimate ¢ via least squares over data § = argmin ) | x*-fx.U0) |
v (X,UX"eD

2. Synthesize a controller 7z (X, 0)



Linear System Quadratic Cost

1.01 001 O
X .= (001 1.01 001|X+U+W, c(X,U) = |IX|I>+ U
0 001 1.01

Certainty Equivalent Control 10°

ACA A - —— Certainty Equivalence
r~e(0) = argminJ(r, 0) i —— Robust Control
rell,

high-performing when stabilizing \/ 10°

unreliable in low-data regime x

Excess Cost

107 _ \_\
Robust Control :
A A )
T onuet(0) = argmin sup J(r, 0)
rell, 60€G
1072 -
over 1y conservative per formance x 0 25 50 75 100 125 150 175 200

Number of Experiments
reliable in low-data regime J



Domain Randomization
Input: Estimate 0
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Domain Randomization
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