Collaborative Research: SLES:

Foundations of Qualitative and Quantitative Safety Assessment of Learning-enabled Systems

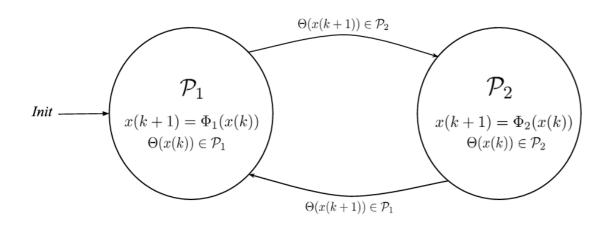
Grant no. 2331938

Collaborate with 2331937 (Hoang-Dung Tran, UNL, Lead)

Weiming Xiang

School of Computer and Cyber Sciences Augusta University

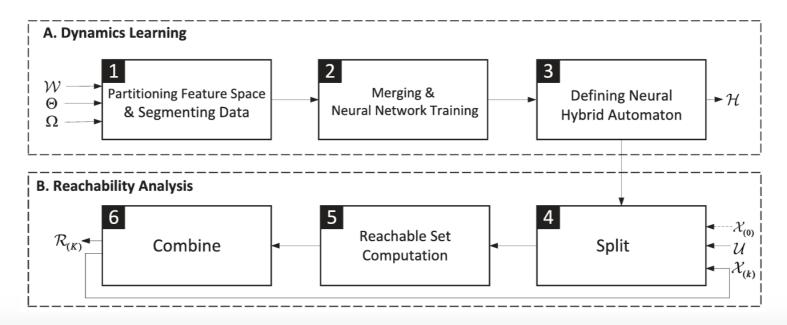
Project Overview


- Develop a New Specification Language that Supports Qualitative and Quantitative (Q2) Safety Reasoning
- <u>Develop Scalable, Memory-Efficient DNN Q2 Safety</u> <u>Verification Methods</u>
- Develop System-Level Q2 Safety Assessment Methods

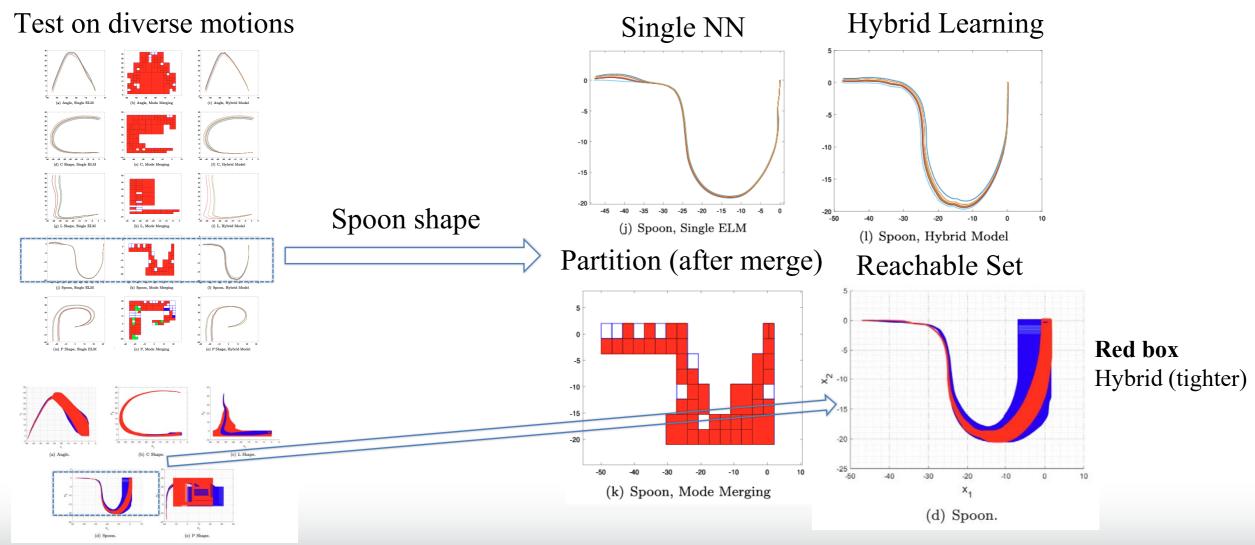
- Develop Scalable, Memory-Efficient DNN Q2 Safety Verification Methods
 - Develop computational efficient and verification
 friendly learning models
 - Small NNs + Transition (Hybrid Learning Structure)
 - Trustworthy NN Compression

- Develop computational efficient and verification friendly learning models
 - Small NN + Transition (Hybrid Learning Structure)

 $\mathcal{H} \triangleq \langle \mathcal{P}, x, init, \mathcal{E}, g, \mathcal{G}, inv, \Phi \rangle$


Neural hybrid automaton: Partitions; State Variables; Initial Conditions; Transitions; Guard Functions; Guards; Invariants; and <u>Neural Networks.</u>

Small-size NN (Extreme Learning Machine)

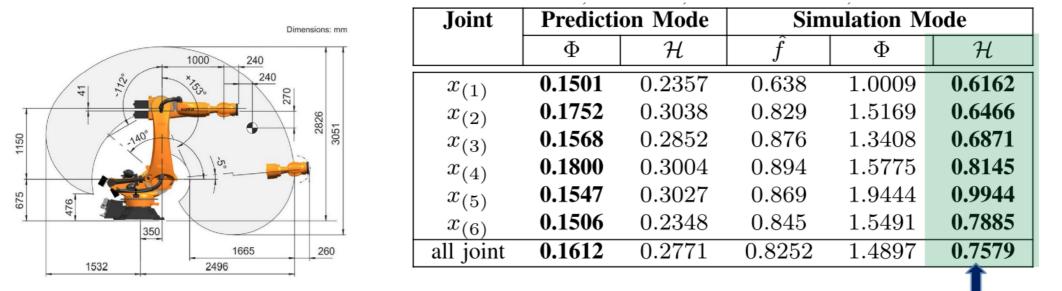

- Develop computational efficient and verification friendly learning models
 - Small NNs + Transition (Hybrid Learning Structure)

Learning and Verification Framework

- Evaluation
 - Learning human handwriting motions on LASA dataset

• Evaluation

- Learning human handwriting motions on LASA dataset


Data set	MSE	Training	Reachable set	- Single neural network					
Angle	2.739×10^{-4}	4.50×10^{-2} s	3.6466×10^4 s	- Single NN with 200 hidden neurons					
C Shape	2.375×10^{-4}	4.79×10^{-2} s	9.0068×10^4 s						
L Shape	1.972×10^{-4}	4.37×10^{-2} s	$9.7783 \times 10^4 \text{ s}$	、 [Data set	Time			
Spoon	1.767×10^{-4}	4.30×10^{-2} s	8.4465×10^4 s	\mathbf{i}	Angle	1.3%			
P Shape	2.301×10^{-4}	4.50×10^{-2} s	8.5201×10^4 s		7		Computation efficient		
	210017110		0.5201 × 10 3			0.00/			
			0.5201 × 10 3		C Shape	3.6%			
	utation time of neural h		0.5201 × 10 3	_			and verification friendly:		
			Reachable set	-	C Shape L Shape	3.6% 1.5%			
SE and compu	utation time of neural h	ybrid automaton.		-			and verification friendly:		
SE and compu Data set	utation time of neural h MSE	ybrid automaton. Training	Reachable set		L Shape Spoon	1.5% 0.08%	and verification friendly: Computation time is		
SE and compu Data set Angle	MSE 4.787×10^{-4}	ybrid automaton. Training 8.60×10^{-3} s	Reachable set 503.0428 s		L Shape	1.5%	and verification friendly: Computation time is		
SE and compu Data set Angle C Shape	$\frac{11}{MSE}$ 4.787×10^{-4} 8.323×10^{-4}	ybrid automaton. Training 8.60×10^{-3} s 1.25×10^{-2} s	Reachable set 503.0428 s 3308.2473 s	Hvbr	L Shape Spoon	1.5% 0.08% 0.14%	and verification friendly: Computation time is		

• Evaluation

– 6 Joint Industrial Robot, high-dimensional dynamics

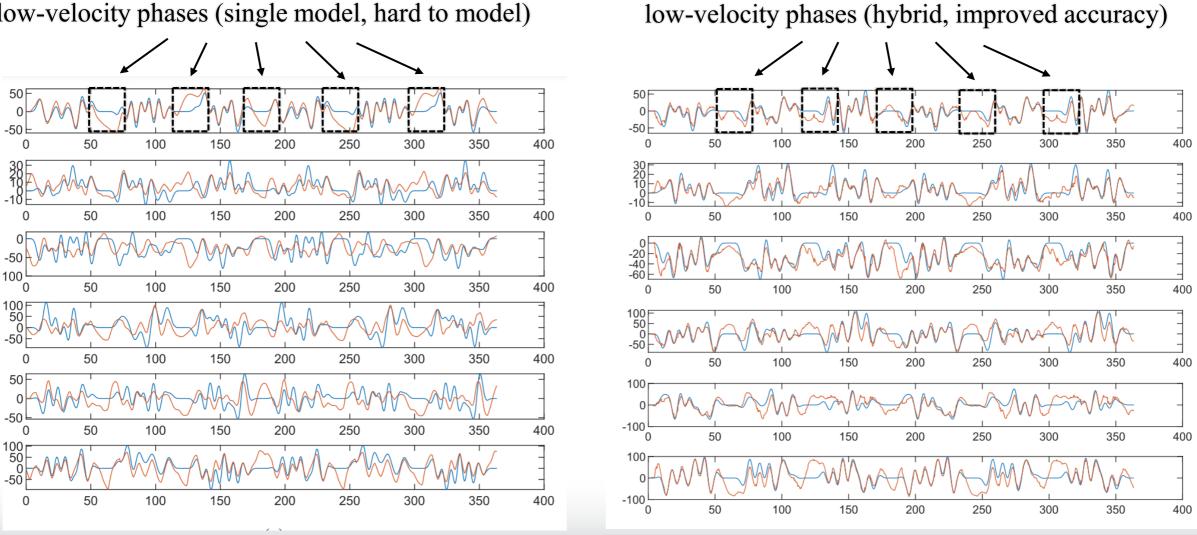
 $x(k+1) = f(\tau(k), u(k)) \quad [x(k)^T, \dots, x(k-23)^T]^T \in \mathbb{R}^{144} \quad u(k) \in \mathbb{R}^{144}$

Use previous 2.4 s to predict the positions in the next 0.1 s, with a sample time of 0.1 s

MSE Performance

Bonus: Best accuracy

J. Weigand, J. Götz, J. Ulmen, and M. Ruskowski. (2023). Dataset and Baseline for an Industrial Robot Identification Benchmark. [Online].

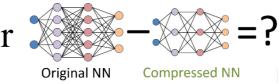

AUGUSTA UNIVERSITY

Evaluation

Hybrid learning better adapts to different operational phases.

Comparison

low-velocity phases (single model, hard to model)



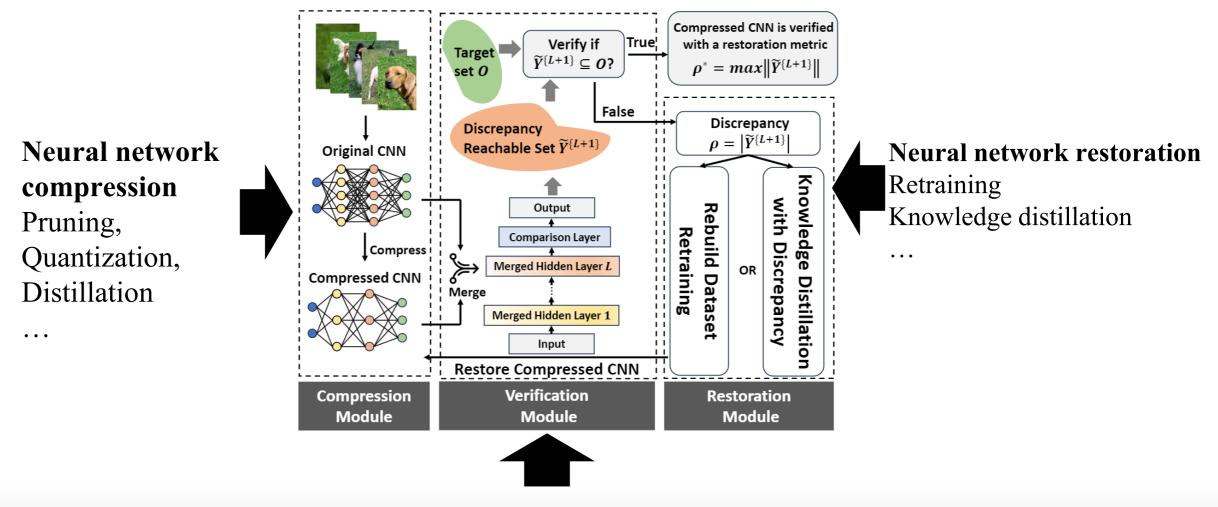
J. Weigand, J. Götz, J. Ulmen, and M. Ruskowski. (2023). Dataset and Baseline for an Industrial Robot Identification Benchmark. [Online]

AUGUSTA UNIVERSITY

Trustworthy NN Compression

We need to consider <u>the worst case</u> for

Maximal Discrepancy: $\rho = \max_{x \in X} ||f_1(x) - f_2(x)||$


where X is the input constraint set, including **all possible** (*infinite number of*) inputs.

A <u>smaller Maximal Discrepancy</u> means a <u>better property restoration capability</u> to maintain the property of the original network.

Trustworthy NN Compression

Question: How to compute, verify, and restore Maximal Discrepancy?

Neural Network verification: reachability, bound propagation, ...

Trustworthy NN Compression

Evaluation: 8 compression methods embedded in PyTorch.

MNIST: CNN contains 2 convolution layers, 1 pooling layer,and 2 linear layers, with ReLU activation.

CIFAR-10: VGG16 model has 16 layers with trainable parameters.

Compression Methods:

- 4 Quantization methods.
- 4 Pruning methods

Discrepancy Computation Methods:

- Star-set based reachability
- Bound propagation

Table 1: Comparison among compression methods for CNN with MNIST dataset and CIFAR10 dataset									
Similar → Differ									
Dataset	Network	Parameters	Size	Sparsity	Accuracy	Discrepancy ρ^*	Time		
	Original network	1.2 M	4690 KB	0%	98%	-	-		
	Eager QAT network	1.2 M	1184 KB	0%	99%	2.6147	11.5470 s		
	FX QAT network	1.2 M	1179 KB	0%	99%	7.3433	5.7949 s		
	Eager Static network	1.2 M	1184 KB	0%	96%	>10.0937	-		
MNIST	FX Static network	1.2 M	1179 KB	0%	94%	3.4256	322.9563 s		
	L-Unstru network	1.2 M	4690 KB	20%	98%	0.6061	11.3286 s		
	G-Unstru network	$-1.2 \overline{M}$	- 4690 KB -	20%	98%	0.0604	17.3008 s		
	L-Stru network	$-1.2 \overline{M}$	- 4690 KB -	19.97%	98%	0.6670	$1\bar{8}.\bar{2}1\bar{8}\bar{0}\bar{s}$		
	R-Stru network	1.2 M	4690 KB	19.97%	97%	10.6880	20.3732 s		
	Original network	7.8 M	30791 KB	0%	80%	-	-		
	Eager QAT network	7.8 M	7781 KB	0%	80%	16.3547	527.7462 s		
	FX QAT network	7.8 M	7725 KB	0%	80%	17.0159	677.9000 s		
	Eager Static network	7.8 M	7781 KB	0%	28%	>28.1005	-		
CIFAR10	FX Static network	7.8 M	7725 KB	0%	28%	>27.3428	-		
	L-Unstru network	7.8 M	30791 KB	20%	80%	1.9602	482.8901 s		
	G-Unstru network	$-7.8 \overline{M}$	- 30791 KB	20%	80%	<u>0.94</u> 87	494.5455 s		
	L-Stru network	$-7.8 \overline{M}$	- 30791 KB	19.95%	$-\overline{32\%}$	32.5631	427.7225 s		
	R-Stru network	7.8 M	30791 KB	19.95%	26%	33.1896	364.9997 s		

Table 1: Comparison between reachability method and BaB method on MNIST and CIFAR10

Detect	Network 1		Network 2		Noise	Reachability		BaB	
Dataset	Model	Accuracy	Model	Accuracy	INDISC	Discrepancy	Time	Discrepancy	Time
MNIST	FNN4	97%	FNN4	97%	3*3	4.3068	0.03s	4.2713	12s
	CNN4	90%	CNN4	89%	3*3	3.1278	0.03s	3.1229	20s
CIFAR10	VGG	75%	VGG	73%	2*1*3	18.6372	288s	18.6284	346s
	VGG	75%	VGG	73%	32*32*1	-	-	388.3810	3967s

Trustworthy NN Compression

Evaluation: 8 compression methods embedded in PyTorch

Restoration Results

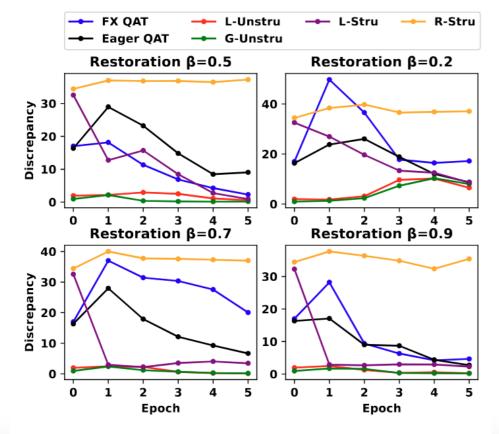


 Table 2: Retraining restoration performance

Methods	Ori.	$\beta = 0.5$	$\beta = 0.2$	$\beta = 0.7$	$\beta = 0.9$
FX QAT	17.0159	2.2669	17.1840	20.054	4.6673
Eager QAT	16.3547	9.0541	8.7409	6.6716	2.7320
L-Unstru	1.9602	0.5915	6.4987	0.1254	0.2525
G-Unstru	0.9487	0.1633	7.9780	0.1648	0.1836
L-Stru	32.5631	0.9242	8.5676	3.4599	2.2905
R-Stru	34.4265	37.2667	37.0809	37.0177	35.4302

Figure 2: Restoration performance for different compression methods with different β .

Summary

- Develop Scalable, Memory-Efficient DNN Q2 Safety Verification Methods
 - Develop computational efficient and verification friendly learning models
 - Annual Progress
 - Small NN + Transition (Hybrid Learning Structure)
 - Trustworthy NN Compression
 - Next Year
 - Work with collaborator Dr. Tran at UNL to integrate them to ProStar framework in learning-enable CPS.

