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Risk-Sensitive DRL
• Traditional (risk-neutral) RL

• Only preserves the expectation: not enough information to make safe decisions.

• Risk-sensitive RL

• Maintains a point estimate of a certain risk measure: reduces the possibility of 
experiencing adverse rewards but not applicable to other risk measures.

• Distributional RL

• Estimates the entire reward distribution: provides a unified framework for 
integrating different risk measures.



End-to-End Safety
• Policy Safety concerns solving a risk-sensitive Constrained DRL (CDRL) problem.

• Exploration Safety concerns the safety when learning the safe policy.

• Environmental Safety concerns model misspecification and nonstationarity when 
solving the problem.



Thrust 1: Policy Gradient Methods for Risk-Sensitive DRL with Provable Convergence

Background and Objective Distributional Policy Gradient Algorithm Numerical Experiments

Distributional Policy Gradient Theorem

We propose a distributional policy gradient algorithm

that aims to solve a risk-sensitive RL problem with

any coherent risk measure:

min
𝜃

𝜌(𝑍𝜃
𝑠)

Compared to other NN-based policy gradient

algorithms (e.g., D4PG, SDPG), our approach CDPG

• Leverages distributional Bellman equation to

derive an analytical gradient form;

• Has finite-time convergence guarantee under

both exact and inexact policy evaluation.
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Finite-Time Convergence Guarantee 

Cliffwalking:

Cartpole:

Gradient of the reward probability measure:



Thrust 3: Physics-guided Distributional Reinforcement Learning

Background and Objective Results 1： Approach 2: Bayesian Entropy Neural 

Networks

Approach 1: Future-Aware Embedded 

Neural Networks

This research aims to develop physics-guided end-

to-end learning methods to tackle the challenge of

lacking safety guarantees in reinforcement learning

applications. This study seeks to improve policy

optimization, exploration strategies, and safety by

embedding physics knowledge into input, output,

and model structure. A key contribution of this work

is its ability to enhance predictive capabilities and risk

awareness, particularly in unseen and uncertain

scenarios, ensuring more robust and reliable decision-

making in reinforcement learning systems.
With the current depth image and state as input and the

future image as output, the network enhances future

image reconstruction and embeds predictive information

into the latent space.

Bayesian Entropy – Constrained updating of probability 

distributions using data and expert knowledge. 

The entropy is measured between the posterior p and prior 

q of the joint distribution for 𝜃 and x as:

𝑆 𝑝, 𝑞 =ඵ𝑝 𝑥, 𝜃 log
𝑝 𝑥, 𝜃

𝑞 𝑥, 𝜃
𝑑𝑥𝑑𝜃

Results 2：
Simultaneously optimize for the Lagrange multipliers using 

backprop using the Differential Method of Multipliers:
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Thrust 4: Simulation and Experimental Testing
Valentin Gaucher, Yogesh Kumar, Amirali Abazari, Wenlong Zhang

Development of Flexible UAV Platform

• Quadrotor UAV with passive foldable arms

• Wrench estimation to understand the environment

• Mechanical Intelligence: squeeze-and-fly, contact-

based mapping and navigation, aggressive flights

• Next step: integration and testing with DRL algorithm

Exploration of UAV Simulators

• Surveyed and compared multiple UAV simulators

• Focused on identifying modular and open-source 

simulators ready for RL implementation

• Finalists: AirSim[1] and RotorPy[2]

• Next step: evaluation and integration of both simulators

[1] https://github.com/spencerfolk/rotorpy

[2] https://microsoft.github.io/AirSim/

Products
Y. Kumar et al., “Design, Contact Modeling, and Collision-inclusive Planning of a Dual-stiffness AerialRoboT (DART)”, 2025 ICRA, accepted.

A. Abazari, et al., “Dynamic Collision-Inclusive Modeling of a Multi-rotor Aerial Vehicle using Linear Complementarity Systems”, 2025 ACC, accepted.
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