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Risk-Sensitive DRL

* Traditional (risk-neutral) RL
* Only preserves the expectation: not enough information to make safe decisions.

* Risk-sensitive RL
« Maintains a point estimate of a certain risk measure: reduces the possibility of
experiencing adverse rewards but not applicable to other risk measures.

* Distributional RL
 Estimates the entire reward distribution: provides a unified framework for
Integrating different risk measures.
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End-to-End Safety

 Policy Safety concerns solving a risk-sensitive Constrained DRL (CDRL) problem.
« Exploration Safety concerns the safety when learning the safe policy.

* Environmental Safety concerns model misspecification and nonstationarity when
solving the problem.
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Background and Objective Distributional Policy Gradient Algorithm

We propose a distributional policy gradient algorithm  Algorithm 1 Distributional Policy Gradient Algorithm

that aims to solve a risk-sensitive RL problem with  Require: Initial Parameter 6, Stepsize 6

any coherent risk measure: fort=1,...,T do
: s if |Vop(Z;,)| < € then
" P(Z5) ) ) Return 6;
Compared to other NN-based policy gradient end if

algorithms (e.g., D4PG, SDPG), our approach CDPG

» Leverages distributional Bellman equation to
derive an analytical gradient form;

* Has finite-time convergence guarantee under
both exact and inexact policy evaluation.

# Distributional Policy Evaluation
while not converged do
Mg, < T 1o,
end while
# Distributional Policy Improvement
Compute policy gradient Vop(Z3 ) based on Venj .
Update 9t+1 S 9?: —0- V&O(th)

Distributional Policy Gradient Theorem end for

Gradient of the reward probability measure:
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Finite-Time Convergence Guarantee

Theorem 4.11 (CDPG Convergence) Suppose Assump-
tion 4.10 holds. Let e, = min{>7_ p'>® — o, a —

(5.0) _ 171 p™°Y. In Algorithm 2, let the stepsize § = 1/ and
where g(s) = Y, 4 Vemo(als)n, ™ and B is tho nyumber of LcT™ oracle calls k(N, |g|) = kN|1g + 1].

the t-step pushforward operator defined as B™(50%!) := For any ¢ > 0, we have min,—; |V p(Zo, N3 < &
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Numerical Experiments
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Thrust 3: Physics-guided Distributional Reinforcement Learning [IS11

Yaoxin Shen, Rahul Rathnakumar, Yongming Liu**, Arizona State University

Background and Objective

This research aims to develop physics-guided end-
to-end learning methods to tackle the challenge of
lacking safety guarantees in reinforcement learning
applications. This study seeks to improve policy
optimization, exploration strategies, and safety by
embedding physics knowledge into input, output,
and model structure. A key contribution of this work
Is its ability to enhance predictive capabilities and risk
awareness, particularly in unseen and uncertain
scenarios, ensuring more robust and reliable decision-
making in reinforcement learning systems.

Approach 1: Future-Aware Embedded
Neural Networks
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Results 1:

Current 2 Current 3 Current 4

True Future 1 True Future 2 True Future 3 True Future 4
Predicted 1 Predicted 2 Predicted 3 Predicted 4

With the current depth image and state as input and the

future image as output, the network enhances future

image reconstruction and embeds predictive information . vae constraints:x = 5,x = 7.5

into the latent space.
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Approach 2: Bayesian Entropy Neural

Networks

Bayesian Entropy — Constrained updating of probability
distributions using data and expert knowledge.

The entropy is measured between the posterior p and prior
g of the joint distribution for 6 and x as:

%) dxd@
q(x.9)> g

Slp,ql = f p(x, 6) log(p(x'
Results 2 :
Simultaneously optimize for the Lagrange multipliers using

backprop using the Differential Method of Multipliers:

Bound constraints: [-0.5,0.5] Derivative constraint: x = 5.0

UAV Trajectory Visualization

-30 -20 -10 0 10 20 30 40
Y-Axis



Valentin Gaucher, Yogesh Kumar, Amirali Abazari, Wenlong Zhang

Development of Flexible UAV Platform Exploration of UAV Simulators
* Quadrotor UAV with passive foldable arms « Surveyed and compared multiple UAV simulators
» Wrench estimation to understand the environment » Focused on identifying modular and open-source
« Mechanical Intelligence: squeeze-and-fly, contact- simulators ready for RL implementation
based mapping and navigation, aggressive flights  Finalists: AirSim!t! and RotorPy!?
* Next step: integration and testing with DRL algorithm * Next step: evaluation and integration of both simulators

Obstacle; (wooden wall)

[1] https://github.com/spencerfolk/rotorpy
[2] https://microsoft.github.io/AirSim/

Obstacle, (Acrylic wall)

Products

Y. Kumar et al., “Design, Contact Modeling, and Collision-inclusive Planning of a Dual-stiffness AerialRoboT (DART)”, 2025 ICRA, accepted.
A. Abazari, et al., “Dynamic Collision-Inclusive Modeling of a Multi-rotor Aerial Vehicle using Linear Complementarity Systems”, 2025 ACC, accepted.
K. Patnaik et al., “Tactile-based Exploration, Mapping and Navigation with Collision-Resilient Aerial Vehicles”, IEEE/ASME Transactions on Mechatronics (T-MECH), under review.
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