- This event has passed.
ASSET Seminar: Using Large Language Models to Build Explainable Classifiers (Chris Callison-Burch, University of Pennsylvania)
February 8, 2023 @ 12:00 PM - 1:30 PM
Presentation Abstract:
- Image classification with explainable features (https://arxiv.org/abs/2211.
11158) - Text classification with explainable features (work in progress)
- The importance of faithfulness in explanations (https://arxiv.org/abs/2209.
11326) - (Time permitting) A faithful “chain of thought” LLM reasoner that produces code in its explanations (https://arxiv.org/abs/2301.
13379)
Speaker Bio:
Chris Callison-Burch is an associate professor of Computer and Information Science at the University of Pennsylvania. His course on Artificial Intelligence has one of the highest enrollments at the university with 500 students taking the class each Fall.
He is best known for his research into statistical machine translation, paraphrasing and crowdsourcing. His current research is focused on applications of large language models to long-standing challenge problems in artificial intelligence. His PhD students joke that now whenever they ask him anything his first response is “Have you tried GPT-3 for that?”
Prof Callison-Burch has more than 100 publications, which have been cited over 20,000 times. He is a Sloan Research Fellow, and he has received faculty research awards from Google, Microsoft, Amazon, Facebook, and Roblox, in addition to funding from DARPA, IARPA, and the NSF.