NeurIPS 2023

2023 Accepted Papers:

1. A Near-Linear Time Algorithm for the Chamfer Distance

 

  • Ainesh Bakshi, Piotr Indyk, Rajesh Jayaram, Sandeep Silwal, Erik Waingarten

2. Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness

 

  • Ambar Pal, Jeremias Sulam, Rene Vidal

3. Adversarial Resilience in Sequential Prediction via Abstention

 

  • Surbhi Goel, Steve Hanneke, Shay Moran, Abhishek Shetty

4. Banana: Banach Fixed-Point Network for Pointcloud Segmentation with Inter-Part Equivariance (Spotlight)

 

  • Congyue Deng, Jiahui Lei, William B. Shen, Kostas Daniilidis, Leonidas Guibas

5. Budgeting Counterfactual for Offline RL

 

  • Yao Liu, Pratik Chaudhari, Rasool Fakoor

6. CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion 

 

  • Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, Bing Xiang

7. DP-HyPO: An Adaptive Private Framework for Hyperparameter Optimization

 

  • Hua Wang, Sheng Gao, Huanyu Zhang, Weijie Su, Milan Shen

8. Exposing Attention Glitches with Flip-Flop Language Modeling (Spotlight)

 

  • Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang

9. Fair Canonical Correlation Analysis

 

  • Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Boning Tong, Jia Xu, Yanbo Feng, Qi Long, Li Shen

10. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable AI 

 

  • Aditya Chattopadhyay, Ryan Pilgrim, Rene Vidal

11. Max-Margin Token Selection in Attention Mechanism (Spotlight)

 

  • Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, Samet Oymak

12. NAP: Neural 3D Articulation Prior

 

  • Jiahui Lei, Congyue Deng, William B. Shen, Leonidas Guibas, Kostas Daniilidis

13. On Learning Latent Models with Multi-Instance Weak Supervision

 

  • Kaifu Wang, Efi Tsamoura, Dan Roth

14. On the Convergence of Black-Box Variational Inference

 

  • Kyurae Kim, Jisu Oh, Kaiwen Wu, Yian Ma, Jacob R. Gardner

15. Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck (Spotlight)

 

  • Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, Cyril Zhang

16. Replicable Reinforcement Learning

 

  • Eric Eaton, Marcel Hussing, Michael Kearns, Jessica Sorrell

17. Scalable Membership Inference Attacks via Quantile Regression

 

  • Martin Bertran, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu

18. SE(3) Equivariant Convolution and Transformer in Ray Space (Spotlight)

 

  • Yinshuang Xu, Jiahui Lei, Kostas Daniilidis

19. Simple, Scalable, Effective Clustering via One-Dimensional Projections 

 

  • Moses Charikar, Monika Henzinger, Lunjia Hu, Maxmilian Vötsch, Erik Waingarten

20. Stability Guarantees for Feature Attributions with Multiplicative Smoothing

 

  • Anton Xue, Rajeev Alur, Eric Wong

21. The Behavior and Convergence of Local Bayesian Optimization (Spotlight)

 

  • Kaiwen Wu, Kyurae Kim, Roman Garnett, Jacob R. Gardner

22. The Noise Level in Linear Regression with Dependent Data

 

  • Ingvar Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni

23. Unified Enhancement of Privacy Bounds for Mixture Mechanisms via $f$-Differential Privacy

 

  • Chendi Wang, Buxin Su, Jiayuan Ye, Reza Shokri

24. Variational Gaussian Processes with Decoupled Conditionals 

 

  • Xinran Zhu, Kaiwen Wu, Natalie Maus, Jacob R. Gardner, David Bindel