NeurIPS 2023
2023 Accepted Papers:
1. A Near-Linear Time Algorithm for the Chamfer Distance
- Ainesh Bakshi, Piotr Indyk, Rajesh Jayaram, Sandeep Silwal, Erik Waingarten
2. Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
- Ambar Pal, Jeremias Sulam, Rene Vidal
3. Adversarial Resilience in Sequential Prediction via Abstention
- Surbhi Goel, Steve Hanneke, Shay Moran, Abhishek Shetty
4. Banana: Banach Fixed-Point Network for Pointcloud Segmentation with Inter-Part Equivariance (Spotlight)
- Congyue Deng, Jiahui Lei, William B. Shen, Kostas Daniilidis, Leonidas Guibas
5. Budgeting Counterfactual for Offline RL
- Yao Liu, Pratik Chaudhari, Rasool Fakoor
6. CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion
- Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, Bing Xiang
7. DP-HyPO: An Adaptive Private Framework for Hyperparameter Optimization
- Hua Wang, Sheng Gao, Huanyu Zhang, Weijie Su, Milan Shen
8. Exposing Attention Glitches with Flip-Flop Language Modeling (Spotlight)
- Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang
9. Fair Canonical Correlation Analysis
- Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Boning Tong, Jia Xu, Yanbo Feng, Qi Long, Li Shen
Aditya Chattopadhyay, Ryan Pilgrim, Rene Vidal
11. Max-Margin Token Selection in Attention Mechanism (Spotlight)
- Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, Samet Oymak
12. NAP: Neural 3D Articulation Prior
- Jiahui Lei, Congyue Deng, William B. Shen, Leonidas Guibas, Kostas Daniilidis
13. On Learning Latent Models with Multi-Instance Weak Supervision
- Kaifu Wang, Efi Tsamoura, Dan Roth
14. On the Convergence of Black-Box Variational Inference
- Kyurae Kim, Jisu Oh, Kaiwen Wu, Yian Ma, Jacob R. Gardner
15. Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck (Spotlight)
- Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, Cyril Zhang
16. Replicable Reinforcement Learning
- Eric Eaton, Marcel Hussing, Michael Kearns, Jessica Sorrell
17. Scalable Membership Inference Attacks via Quantile Regression
- Martin Bertran, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu
18. SE(3) Equivariant Convolution and Transformer in Ray Space (Spotlight)
- Yinshuang Xu, Jiahui Lei, Kostas Daniilidis
19. Simple, Scalable, Effective Clustering via One-Dimensional Projections
- Moses Charikar, Monika Henzinger, Lunjia Hu, Maxmilian Vötsch, Erik Waingarten
20. Stability Guarantees for Feature Attributions with Multiplicative Smoothing
- Anton Xue, Rajeev Alur, Eric Wong
21. The Behavior and Convergence of Local Bayesian Optimization (Spotlight)
- Kaiwen Wu, Kyurae Kim, Roman Garnett, Jacob R. Gardner
22. The Noise Level in Linear Regression with Dependent Data
- Ingvar Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni
23. Unified Enhancement of Privacy Bounds for Mixture Mechanisms via $f$-Differential Privacy
- Chendi Wang, Buxin Su, Jiayuan Ye, Reza Shokri
24. Variational Gaussian Processes with Decoupled Conditionals
- Xinran Zhu, Kaiwen Wu, Natalie Maus, Jacob R. Gardner, David Bindel